Hello, World!

RunLoop

字数统计: 7k阅读时长: 31 min
2019/03/04 Share

RunLoop是iOS开发中非常基础的一个概念,这篇文章将从CFRunLoop的源码入手,介绍RunLoop的概念以及底层实现原理。之后会介绍一下在iOS中,苹果是如何利用RunLoop实现自动释放池、延迟回调、触摸事件、屏幕刷新等功能的。

RunLoop的概念

一般来讲,一个线程一次只能执行一个任务,执行完成后线程就会退出。如果我们需要一个机制,让线程能随时处理事件但并不退出,通常的代码逻辑是这样的:

1
2
3
4
5
6
7
function loop() {
initialize();
do {
var message = get_next_message();
process_message(message);
} while (message != quit);
}

这种模型通常被称作Event Loop。 OSX/iOS里的RunLoop实现了Event Loop。实现这种模型的关键点在于:如何管理事件/消息,如何让线程在没有处理消息时休眠以避免资源占用、在有消息到来时立刻被唤醒。

所以,RunLoop实际上就是一个对象,这个对象管理了其需要处理的事件和消息,并提供了一个入口函数来执行上面Event Loop的逻辑。线程执行了这个函数后,就会一直处于这个函数内部”接受消息->等待->处理”的循环中,直到这个循环结束(比如传入quit的消息),函数返回。

OSX/iOS系统中,提供了两个这样的对象:NSRunLoopCFRunLoopRef
CFRunLoopRef是在CoreFoundation框架内的,它提供了纯C函数的API,所有这些API都是线程安全的。
NSRunLoop是基于CFRunLoopRef的封装,提供了面向对象的API,但是这些API不是线程安全的。

CFRunLoopRef的代码是开源的,你可以在这里下载到整个 CoreFoundation的源码来查看。

RunLoop与线程的关系

首先,iOS开发中能遇到两个线程对象: pthread_tNSThread。 二者之间是一一对应的。比如,你可以通过pthread_main_thread_np()[NSThread mainThread]来获取主线程,也可以通过pthread_self()[NSThread currentThread]来获取当前线程。CFRunLoop是基于pthread来管理的。

苹果不允许直接创建RunLoop,它只提供了两个自动获取的函数:CFRunLoopGetMain()CFRunLoopGetCurrent()。这两个函数内部的逻辑大概是下面这样:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// 全局的Dictionary,key是pthread_t,value是CFRunLoopRef
static CFMutableDictionaryRef __CFRunLoops = NULL;

// 访问__CFRunLoops时的锁
static CFLock_t loopsLock = CFLockInit;

// 获取一个pthread对应的RunLoop。
CFRunLoopRef _CFRunLoopGet0(pthread_t t) {
...
__CFLock(&loopsLock);

if (!__CFRunLoops) {
__CFUnlock(&loopsLock);
// 第一次进入时,初始化全局Dic,并先为主线程创建一个RunLoop。
CFMutableDictionaryRef dict = CFDictionaryCreateMutable(kCFAllocatorSystemDefault, 0, NULL, &kCFTypeDictionaryValueCallBacks);
CFRunLoopRef mainLoop = __CFRunLoopCreate(pthread_main_thread_np());
CFDictionarySetValue(dict, pthreadPointer(pthread_main_thread_np()), mainLoop);
if (!OSAtomicCompareAndSwapPtrBarrier(NULL, dict, (void * volatile *)&__CFRunLoops)) {
CFRelease(dict);
}
CFRelease(mainLoop);
__CFLock(&loopsLock);
}
// 直接从 Dictionary 里获取。
CFRunLoopRef loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));

if (!loop) {
// 取不到时,创建一个
CFRunLoopRef newLoop = __CFRunLoopCreate(t);
__CFLock(&loopsLock);
loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));
if (!loop) {
CFDictionarySetValue(__CFRunLoops, pthreadPointer(t), newLoop);
loop = newLoop;
}
// do not release run loops inside the loopsLock, because CFRunLoopDeallocate may end up taking it
__CFUnlock(&loopsLock);
CFRelease(newLoop);
}

if (pthread_equal(t, pthread_self())) {
_CFSetTSD(__CFTSDKeyRunLoop, (void *)loop, NULL);
if (0 == _CFGetTSD(__CFTSDKeyRunLoopCntr)) {
// 注册一个回调,当线程销毁时,顺便也销毁其对应的RunLoop。
_CFSetTSD(__CFTSDKeyRunLoopCntr, (void *)(PTHREAD_DESTRUCTOR_ITERATIONS-1), (void (*)(void *))__CFFinalizeRunLoop);
}
}

return loop;
}

CFRunLoopRef CFRunLoopGetMain() {
...
static CFRunLoopRef __main = NULL; // no retain needed
if (!__main) __main = _CFRunLoopGet0(pthread_main_thread_np()); // no CAS needed
return __main;
}

CFRunLoopRef CFRunLoopGetCurrent() {
...
CFRunLoopRef rl = (CFRunLoopRef)_CFGetTSD(__CFTSDKeyRunLoop);
if (rl) return rl;
return _CFRunLoopGet0(pthread_self());
}

从上面的代码可以看出,线程和RunLoop之间是一一对应的,其关系是保存在一个全局的Dictionary里。线程刚创建时并没有RunLoop,如果你不主动获取,那它一直都不会有。RunLoop的创建是发生在第一次获取时,RunLoop的销毁是发生在线程结束时。你只能在一个线程的内部获取其RunLoop(主线程除外)。

RunLoop对外的接口

CoreFoundation里面关于RunLoop有5个类:

CFRunLoopRef
CFRunLoopModeRef
CFRunLoopSourceRef
CFRunLoopTimerRef
CFRunLoopObserverRef

其中CFRunLoopModeRef类没有对外暴露,只是通过CFRunLoopRef的接口进行了封装。他们的关系如下:

runloop

一个RunLoop包含若干个Mode,每个 Mode 又包含若干个 Source/Timer/Observer。每次调用RunLoop的主函数时,只能指定其中一个 Mode,这个Mode被称作CurrentMode。如果需要切换Mode,只能退出 Loop,再重新指定一个Mode进入。这样做主要是为了分隔开不同组的 Source/Timer/Observer,让其互不影响。

CFRunLoopSourceRef

CFRunLoopSourceRef是事件产生的地方。Source有两个版本:Source0和Source1。

  • Source0只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用CFRunLoopSourceSignal(source),将这个 Source标记为待处理,然后手动调用CFRunLoopWakeUp(runloop)来唤醒RunLoop,让其处理这个事件。
  • Source1包含了一个mach_port和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种Source能主动唤醒RunLoop的线程,其原理在下面会讲到。

CFRunLoopTimerRef

CFRunLoopTimerRef是基于时间的触发器,它和NSTimer是toll-free bridged的,可以混用。其包含一个时间长度和一个回调(函数指针)。当其加入到RunLoop时,RunLoop会注册对应的时间点,当时间点到时,RunLoop会被唤醒以执行那个回调。

CFRunLoopObserverRef

CFRunLoopObserverRef是观察者,每个Observer都包含了一个回调(函数指针),当RunLoop的状态发生变化时,观察者就能通过回调接受到这个变化。可以观测的时间点有以下几个:

1
2
3
4
5
6
7
8
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
kCFRunLoopEntry = (1UL << 0), // 即将进入Loop
kCFRunLoopBeforeTimers = (1UL << 1), // 即将处理 Timer
kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source
kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠
kCFRunLoopAfterWaiting = (1UL << 6), // 刚从休眠中唤醒
kCFRunLoopExit = (1UL << 7), // 即将退出Loop
};

上面的Source/Timer/Observer被统称为mode item,一个item可以被同时加入多个mode。但一个item被重复加入同一个mode时是不会有效果的。如果一个mode中一个item都没有,则RunLoop会直接退出,不进入循环。

RunLoop的Mode

CFRunLoopModeCFRunLoop的结构大致如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
typedef struct __CFRunLoopMode *CFRunLoopModeRef;

struct __CFRunLoopMode {
CFStringRef _name; // Mode Name, 例如 @"kCFRunLoopDefaultMode"
CFMutableSetRef _sources0; // Set
CFMutableSetRef _sources1; // Set
CFMutableArrayRef _observers; // Array
CFMutableArrayRef _timers; // Array
...
};

struct __CFRunLoop {
CFMutableSetRef _commonModes; // Set
CFMutableSetRef _commonModeItems; // Set<Source/Observer/Timer>
CFRunLoopModeRef _currentMode; // Current Runloop Mode
CFMutableSetRef _modes; // Set
...
};

这里有个概念叫”CommonModes”:一个Mode可以将自己标记为”Common”属性(通过将其 ModeName添加到RunLoop的 “commonModes”中)。每当RunLoop的内容发生变化时,RunLoop都会自动将_commonModeItems里的Source/Observer/Timer同步到具有 “Common”标记的所有Mode里。

应用场景举例:主线程的RunLoop里有两个预置的 Mode:kCFRunLoopDefaultModeUITrackingRunLoopMode。这两个 Mode都已经被标记为”Common”属性。DefaultMode是 App 平时所处的状态,TrackingRunLoopMode是追踪ScrollView滑动时的状态。当你创建一个Timer并加到DefaultMode时,Timer会得到重复回调,但此时滑动一个TableView时,RunLoop会将mode切换为 TrackingRunLoopMode,这时Timer就不会被回调,并且也不会影响到滑动操作。

有时你需要一个Timer,在两个Mode中都能得到回调,一种办法就是将这个 Timer分别加入这两个Mode。还有一种方式,就是将Timer加入到顶层的 RunLoop 的”commonModeItems”中。”commonModeItems”被 RunLoop自动更新到所有具有”Common”属性的Mode里去。

CFRunLoop对外暴露的管理Mode接口只有下面2个:

1
2
CFRunLoopAddCommonMode(CFRunLoopRef runloop, CFStringRef modeName);
CFRunLoopRunInMode(CFStringRef modeName, ...);

Mode暴露的管理mode item的接口有下面几个:

1
2
3
4
5
6
CFRunLoopAddSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
CFRunLoopAddObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
CFRunLoopRemoveSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
CFRunLoopRemoveObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
CFRunLoopRemoveTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);

你只能通过mode name来操作内部的mode,当你传入一个新的mode name 但RunLoop内部没有对应mode时,RunLoop会自动帮你创建对应的 CFRunLoopModeRef。对于一个RunLoop来说,其内部的mode只能增加不能删除。

苹果公开提供的Mode有两个:kCFRunLoopDefaultMode (NSDefaultRunLoopMode) 和UITrackingRunLoopMode,你可以用这两个Mode Name来操作其对应的 Mode。

同时苹果还提供了一个操作Common标记的字符串:kCFRunLoopCommonModes (NSRunLoopCommonModes),你可以用这个字符串来操作Common Items,或标记一个Mode为”Common”。使用时注意区分这个字符串和其他mode name。

RunLoop的内部逻辑

根据苹果在文档里的说明,RunLoop内部的逻辑大致如下:

runloop

其内部代码整理如下(太长了不想看可以直接跳过去,后面会有说明):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// 默认用kCFRunLoopDefaultMode启动RunLoop
void CFRunLoopRun(void) { /* DOES CALLOUT */
int32_t result;
do {
// 核心 CFRunLoopRunSpecific
result = CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
...
} while (kCFRunLoopRunStopped != result && kCFRunLoopRunFinished != result);
}

// 用指定的Mode启动RunLoop,允许设置RunLoop超时时间
SInt32 CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) { /* DOES CALLOUT */
...
return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
}

// RunLoop的实现
SInt32 CFRunLoopRunSpecific(CFRunLoopRef rl, CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) {
...
__CFRunLoopLock(rl);
// 首先根据modeName找到对应mode
CFRunLoopModeRef currentMode = __CFRunLoopFindMode(rl, modeName, false);

// 如果mode里没有source/timer/observer, 直接返回。
if (NULL == currentMode || __CFRunLoopModeIsEmpty(rl, currentMode, rl->_currentMode)) {
Boolean did = false;
if (currentMode) __CFRunLoopModeUnlock(currentMode);
__CFRunLoopUnlock(rl);
return did ? kCFRunLoopRunHandledSource : kCFRunLoopRunFinished;
}

//
volatile _per_run_data *previousPerRun = __CFRunLoopPushPerRunData(rl);
CFRunLoopModeRef previousMode = rl->_currentMode;
rl->_currentMode = currentMode;
int32_t result = kCFRunLoopRunFinished;

// 1.通知Observer:即将进入Loop
if (currentMode->_observerMask & kCFRunLoopEntry ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopEntry);
result = __CFRunLoopRun(rl, currentMode, seconds, returnAfterSourceHandled, previousMode);
// 10.通知Observer:即将退出Loop
if (currentMode->_observerMask & kCFRunLoopExit ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);

//
__CFRunLoopModeUnlock(currentMode);
__CFRunLoopPopPerRunData(rl, previousPerRun);
rl->_currentMode = previousMode;

__CFRunLoopUnlock(rl);
return result;
}

// RunLoop的核心实现
static int32_t __CFRunLoopRun(CFRunLoopRef rl, CFRunLoopModeRef rlm, CFTimeInterval seconds, Boolean stopAfterHandle, CFRunLoopModeRef previousMode) {
uint64_t startTSR = mach_absolute_time();

if (__CFRunLoopIsStopped(rl)) {
__CFRunLoopUnsetStopped(rl);
return kCFRunLoopRunStopped;
} else if (rlm->_stopped) {
rlm->_stopped = false;
return kCFRunLoopRunStopped;
}

mach_port_name_t dispatchPort = MACH_PORT_NULL;
Boolean libdispatchQSafe = pthread_main_np() && ((HANDLE_DISPATCH_ON_BASE_INVOCATION_ONLY && NULL == previousMode) || (!HANDLE_DISPATCH_ON_BASE_INVOCATION_ONLY && 0 == _CFGetTSD(__CFTSDKeyIsInGCDMainQ)));
if (libdispatchQSafe && (CFRunLoopGetMain() == rl) && CFSetContainsValue(rl->_commonModes, rlm->_name)) dispatchPort = _dispatch_get_main_queue_port_4CF();

#if USE_DISPATCH_SOURCE_FOR_TIMERS
mach_port_name_t modeQueuePort = MACH_PORT_NULL;
if (rlm->_queue) {
modeQueuePort = _dispatch_runloop_root_queue_get_port_4CF(rlm->_queue);
if (!modeQueuePort) {
CRASH("Unable to get port for run loop mode queue (%d)", -1);
}
}
#endif

dispatch_source_t timeout_timer = NULL;
struct __timeout_context *timeout_context = (struct __timeout_context *)malloc(sizeof(*timeout_context));
if (seconds <= 0.0) { // instant timeout
seconds = 0.0;
timeout_context->termTSR = 0ULL;
} else if (seconds <= TIMER_INTERVAL_LIMIT) {
dispatch_queue_t queue = pthread_main_np() ? __CFDispatchQueueGetGenericMatchingMain() : __CFDispatchQueueGetGenericBackground();
timeout_timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
dispatch_retain(timeout_timer);
timeout_context->ds = timeout_timer;
timeout_context->rl = (CFRunLoopRef)CFRetain(rl);
timeout_context->termTSR = startTSR + __CFTimeIntervalToTSR(seconds);
dispatch_set_context(timeout_timer, timeout_context); // source gets ownership of context
dispatch_source_set_event_handler_f(timeout_timer, __CFRunLoopTimeout);
dispatch_source_set_cancel_handler_f(timeout_timer, __CFRunLoopTimeoutCancel);
uint64_t ns_at = (uint64_t)((__CFTSRToTimeInterval(startTSR) + seconds) * 1000000000ULL);
dispatch_source_set_timer(timeout_timer, dispatch_time(1, ns_at), DISPATCH_TIME_FOREVER, 1000ULL);
dispatch_resume(timeout_timer);
} else { // infinite timeout
seconds = 9999999999.0;
timeout_context->termTSR = UINT64_MAX;
}

Boolean didDispatchPortLastTime = true;
int32_t retVal = 0;
do {
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
voucher_mach_msg_state_t voucherState = VOUCHER_MACH_MSG_STATE_UNCHANGED;
voucher_t voucherCopy = NULL;
#endif
uint8_t msg_buffer[3 * 1024];
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
mach_msg_header_t *msg = NULL;
mach_port_t livePort = MACH_PORT_NULL;
#elif DEPLOYMENT_TARGET_WINDOWS
HANDLE livePort = NULL;
Boolean windowsMessageReceived = false;
#endif
__CFPortSet waitSet = rlm->_portSet;

__CFRunLoopUnsetIgnoreWakeUps(rl);
// 核心 从这里开始
// 2.通知Observer:将要处理Timer
if (rlm->_observerMask & kCFRunLoopBeforeTimers) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeTimers);
// 3.通知Observer:将要处理Source0
if (rlm->_observerMask & kCFRunLoopBeforeSources) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeSources);
// 执行被加入的block
__CFRunLoopDoBlocks(rl, rlm);
// 4.处理source0
Boolean sourceHandledThisLoop = __CFRunLoopDoSources0(rl, rlm, stopAfterHandle);
if (sourceHandledThisLoop) {
__CFRunLoopDoBlocks(rl, rlm);
}

Boolean poll = sourceHandledThisLoop || (0ULL == timeout_context->termTSR);

if (MACH_PORT_NULL != dispatchPort && !didDispatchPortLastTime) {
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
msg = (mach_msg_header_t *)msg_buffer;
// 5.如果有Source1,跳到第9步
if (__CFRunLoopServiceMachPort(dispatchPort, &msg, sizeof(msg_buffer), &livePort, 0, &voucherState, NULL)) {
goto handle_msg;
}
#elif DEPLOYMENT_TARGET_WINDOWS
if (__CFRunLoopWaitForMultipleObjects(NULL, &dispatchPort, 0, 0, &livePort, NULL)) {
goto handle_msg;
}
#endif
}

didDispatchPortLastTime = false;
// 6.通知Observer:线程即将休眠
if (!poll && (rlm->_observerMask & kCFRunLoopBeforeWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeWaiting);
__CFRunLoopSetSleeping(rl);

__CFPortSetInsert(dispatchPort, waitSet);

__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);

CFAbsoluteTime sleepStart = poll ? 0.0 : CFAbsoluteTimeGetCurrent();

#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
#if USE_DISPATCH_SOURCE_FOR_TIMERS
do {
if (kCFUseCollectableAllocator) {
// objc_clear_stack(0);
// <rdar://problem/16393959>
memset(msg_buffer, 0, sizeof(msg_buffer));
}
msg = (mach_msg_header_t *)msg_buffer;
// 7.休眠,等待唤醒
// • 一个基于 port 的Source 的事件。
// • 一个 Timer 到时间了
// • RunLoop 自身的超时时间到了
// • 被其他什么调用者手动唤醒
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY, &voucherState, &voucherCopy);

if (modeQueuePort != MACH_PORT_NULL && livePort == modeQueuePort) {
// Drain the internal queue. If one of the callout blocks sets the timerFired flag, break out and service the timer.
while (_dispatch_runloop_root_queue_perform_4CF(rlm->_queue));
if (rlm->_timerFired) {
// Leave livePort as the queue port, and service timers below
rlm->_timerFired = false;
break;
} else {
if (msg && msg != (mach_msg_header_t *)msg_buffer) free(msg);
}
} else {
// Go ahead and leave the inner loop.
break;
}
} while (1);
#else
if (kCFUseCollectableAllocator) {
// objc_clear_stack(0);
// <rdar://problem/16393959>
memset(msg_buffer, 0, sizeof(msg_buffer));
}
msg = (mach_msg_header_t *)msg_buffer;
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY, &voucherState, &voucherCopy);
#endif


#elif DEPLOYMENT_TARGET_WINDOWS
// Here, use the app-supplied message queue mask. They will set this if they are interested in having this run loop receive windows messages.
__CFRunLoopWaitForMultipleObjects(waitSet, NULL, poll ? 0 : TIMEOUT_INFINITY, rlm->_msgQMask, &livePort, &windowsMessageReceived);
#endif

__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);

rl->_sleepTime += (poll ? 0.0 : (CFAbsoluteTimeGetCurrent() - sleepStart));

// Must remove the local-to-this-activation ports in on every loop
// iteration, as this mode could be run re-entrantly and we do not
// want these ports to get serviced. Also, we do not want them left
// in there if this function returns.

__CFPortSetRemove(dispatchPort, waitSet);

__CFRunLoopSetIgnoreWakeUps(rl);

// user callouts now OK again
__CFRunLoopUnsetSleeping(rl);
// 8.通知Observe:线程刚被唤醒
if (!poll && (rlm->_observerMask & kCFRunLoopAfterWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopAfterWaiting);
// 9.处理唤醒时收到的消息,之后调回2
handle_msg:;
__CFRunLoopSetIgnoreWakeUps(rl);

#if DEPLOYMENT_TARGET_WINDOWS
if (windowsMessageReceived) {
// These Win32 APIs cause a callout, so make sure we are unlocked first and relocked after
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);

if (rlm->_msgPump) {
rlm->_msgPump();
} else {
MSG msg;
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_NOYIELD)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}

__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
sourceHandledThisLoop = true;

__CFRunLoopSetSleeping(rl);
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);

__CFRunLoopWaitForMultipleObjects(waitSet, NULL, 0, 0, &livePort, NULL);

__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
__CFRunLoopUnsetSleeping(rl);
// If we have a new live port then it will be handled below as normal
}


#endif
if (MACH_PORT_NULL == livePort) {
CFRUNLOOP_WAKEUP_FOR_NOTHING();
// handle nothing
} else if (livePort == rl->_wakeUpPort) {
CFRUNLOOP_WAKEUP_FOR_WAKEUP();
// do nothing on Mac OS
#if DEPLOYMENT_TARGET_WINDOWS
// Always reset the wake up port, or risk spinning forever
ResetEvent(rl->_wakeUpPort);
#endif
}
#if USE_DISPATCH_SOURCE_FOR_TIMERS
else if (modeQueuePort != MACH_PORT_NULL && livePort == modeQueuePort) {
CFRUNLOOP_WAKEUP_FOR_TIMER();
// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time())) {
// Re-arm the next timer, because we apparently fired early
__CFArmNextTimerInMode(rlm, rl);
}
}
#endif
#if USE_MK_TIMER_TOO
else if (rlm->_timerPort != MACH_PORT_NULL && livePort == rlm->_timerPort) {
CFRUNLOOP_WAKEUP_FOR_TIMER();
// On Windows, we have observed an issue where the timer port is set before the time which we requested it to be set. For example, we set the fire time to be TSR 167646765860, but it is actually observed firing at TSR 167646764145, which is 1715 ticks early. The result is that, when __CFRunLoopDoTimers checks to see if any of the run loop timers should be firing, it appears to be 'too early' for the next timer, and no timers are handled.
// In this case, the timer port has been automatically reset (since it was returned from MsgWaitForMultipleObjectsEx), and if we do not re-arm it, then no timers will ever be serviced again unless something adjusts the timer list (e.g. adding or removing timers). The fix for the issue is to reset the timer here if CFRunLoopDoTimers did not handle a timer itself. 9308754
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time())) {
// Re-arm the next timer
__CFArmNextTimerInMode(rlm, rl);
}
}
#endif
else if (livePort == dispatchPort) {
CFRUNLOOP_WAKEUP_FOR_DISPATCH();
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);
_CFSetTSD(__CFTSDKeyIsInGCDMainQ, (void *)6, NULL);
#if DEPLOYMENT_TARGET_WINDOWS
void *msg = 0;
#endif
// 9.2 如果有dispatch到main_queue的block,执行block。 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
_CFSetTSD(__CFTSDKeyIsInGCDMainQ, (void *)0, NULL);
__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
sourceHandledThisLoop = true;
didDispatchPortLastTime = true;
} else {
CFRUNLOOP_WAKEUP_FOR_SOURCE();

// If we received a voucher from this mach_msg, then put a copy of the new voucher into TSD. CFMachPortBoost will look in the TSD for the voucher. By using the value in the TSD we tie the CFMachPortBoost to this received mach_msg explicitly without a chance for anything in between the two pieces of code to set the voucher again.
voucher_t previousVoucher = _CFSetTSD(__CFTSDKeyMachMessageHasVoucher, (void *)voucherCopy, os_release);

// Despite the name, this works for windows handles as well
// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
CFRunLoopSourceRef rls = __CFRunLoopModeFindSourceForMachPort(rl, rlm, livePort);
if (rls) {
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
mach_msg_header_t *reply = NULL;
sourceHandledThisLoop = __CFRunLoopDoSource1(rl, rlm, rls, msg, msg->msgh_size, &reply) || sourceHandledThisLoop;
if (NULL != reply) {
(void)mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0, MACH_PORT_NULL, 0, MACH_PORT_NULL);
CFAllocatorDeallocate(kCFAllocatorSystemDefault, reply);
}
#elif DEPLOYMENT_TARGET_WINDOWS
sourceHandledThisLoop = __CFRunLoopDoSource1(rl, rlm, rls) || sourceHandledThisLoop;
#endif
}

// Restore the previous voucher
_CFSetTSD(__CFTSDKeyMachMessageHasVoucher, previousVoucher, os_release);

}
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
if (msg && msg != (mach_msg_header_t *)msg_buffer) free(msg);
#endif

__CFRunLoopDoBlocks(rl, rlm);


if (sourceHandledThisLoop && stopAfterHandle) {
// 进入loop时参数说处理完事件就返回。
retVal = kCFRunLoopRunHandledSource;
} else if (timeout_context->termTSR < mach_absolute_time()) {
// 超出传入参数标记的超时时间了
retVal = kCFRunLoopRunTimedOut;
} else if (__CFRunLoopIsStopped(rl)) {
// 被外部调用者强制停止了
__CFRunLoopUnsetStopped(rl);
retVal = kCFRunLoopRunStopped;
} else if (rlm->_stopped) {
// 被外部调用者强制停止了
rlm->_stopped = false;
retVal = kCFRunLoopRunStopped;
} else if (__CFRunLoopModeIsEmpty(rl, rlm, previousMode)) {
// source/timer/observer一个都没有了
retVal = kCFRunLoopRunFinished;
}

#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
voucher_mach_msg_revert(voucherState);
os_release(voucherCopy);
#endif

} while (0 == retVal);

if (timeout_timer) {
dispatch_source_cancel(timeout_timer);
dispatch_release(timeout_timer);
} else {
free(timeout_context);
}

return retVal;
}

可以看到,实际上RunLoop就是这样一个函数,其内部是一个do-while 循环。当你调用CFRunLoopRun()时,线程就会一直停留在这个循环里,直到超时或被手动停止,该函数才会返回。

RunLoop的底层实现

从上面代码可以看到,RunLoop的核心是基于mach port的,其进入休眠时调用的函数是mach_msg()。为了解释这个逻辑,下面稍微介绍一下 OSX/iOS的系统架构。

系统架构

苹果官方将整个系统大致划分为上述4个层次:
应用层包括用户能接触到的图形应用,例如 Spotlight、Aqua、SpringBoard 等。
应用框架层即开发人员接触到的 Cocoa 等框架。
核心框架层包括各种核心框架、OpenGL等内容。
Darwin 即操作系统的核心,包括系统内核、驱动、Shell 等内容,这一层是开源的,其所有源码都可以在 opensource.apple.com 里找到。

我们在深入看一下Darwin这个核心的架构:
Darwin

其中,在硬件层上面的三个组成部分:Mach、BSD、IOKit (还包括一些上面没标注的内容),共同组成了 XNU 内核。
XNU 内核的内环被称作 Mach,其作为一个微内核,仅提供了诸如处理器调度、IPC (进程间通信)等非常少量的基础服务。
BSD 层可以看作围绕 Mach 层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。
IOKit 层是为设备驱动提供了一个面向对象(C++)的一个框架。

Mach 本身提供的 API 非常有限,而且苹果也不鼓励使用 Mach 的 API,但是这些API非常基础,如果没有这些API的话,其他任何工作都无法实施。在 Mach 中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为”对象”。和其他架构不同, Mach 的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。”消息”是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通信) 的核心。

Mach 的消息定义是在 <mach/message.h> 头文件的,很简单:

1
2
3
4
5
6
7
8
9
10
11
12
13
typedef struct {
mach_msg_header_t header;
mach_msg_body_t body;
} mach_msg_base_t;

typedef struct {
mach_msg_bits_t msgh_bits;
mach_msg_size_t msgh_size;
mach_port_t msgh_remote_port;
mach_port_t msgh_local_port;
mach_port_name_t msgh_voucher_port;
mach_msg_id_t msgh_id;
} mach_msg_header_t;

一条Mach消息实际上就是一个二进制数据包 (BLOB),其头部定义了当前端口local_port和目标端口remote_port,
发送和接受消息是通过同一个API进行的,其option标记了消息传递的方向:

1
2
3
4
5
6
7
8
mach_msg_return_t mach_msg(
mach_msg_header_t *msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_name_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_name_t notify);

为了实现消息的发送和接收,mach_msg()函数实际上是调用了一个 Mach陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach中等同于系统调用。当你在用户态调用mach_msg_trap()时会触发陷阱机制,切换到内核态;内核态中内核实现的mach_msg()函数会完成实际的工作,如下图:

Darwin

RunLoop的核心就是一个mach_msg()(见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送port消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个iOS的App,然后在App静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap()这个地方。

苹果用RunLoop实现的功能

首先我们可以看一下App启动后RunLoop的状态:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
CFRunLoop {
current mode = kCFRunLoopDefaultMode
common modes = {
UITrackingRunLoopMode
kCFRunLoopDefaultMode
}

common mode items = {

// source0 (manual)
CFRunLoopSource {order =-1, {
callout = _UIApplicationHandleEventQueue}}
CFRunLoopSource {order =-1, {
callout = PurpleEventSignalCallback }}
CFRunLoopSource {order = 0, {
callout = FBSSerialQueueRunLoopSourceHandler}}

// source1 (mach port)
CFRunLoopSource {order = 0, {port = 17923}}
CFRunLoopSource {order = 0, {port = 12039}}
CFRunLoopSource {order = 0, {port = 16647}}
CFRunLoopSource {order =-1, {
callout = PurpleEventCallback}}
CFRunLoopSource {order = 0, {port = 2407,
callout = _ZL20notify_port_callbackP12__CFMachPortPvlS1_}}
CFRunLoopSource {order = 0, {port = 1c03,
callout = __IOHIDEventSystemClientAvailabilityCallback}}
CFRunLoopSource {order = 0, {port = 1b03,
callout = __IOHIDEventSystemClientQueueCallback}}
CFRunLoopSource {order = 1, {port = 1903,
callout = __IOMIGMachPortPortCallback}}

// Ovserver
CFRunLoopObserver {order = -2147483647, activities = 0x1, // Entry
callout = _wrapRunLoopWithAutoreleasePoolHandler}
CFRunLoopObserver {order = 0, activities = 0x20, // BeforeWaiting
callout = _UIGestureRecognizerUpdateObserver}
CFRunLoopObserver {order = 1999000, activities = 0xa0, // BeforeWaiting | Exit
callout = _afterCACommitHandler}
CFRunLoopObserver {order = 2000000, activities = 0xa0, // BeforeWaiting | Exit
callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
CFRunLoopObserver {order = 2147483647, activities = 0xa0, // BeforeWaiting | Exit
callout = _wrapRunLoopWithAutoreleasePoolHandler}

// Timer
CFRunLoopTimer {firing = No, interval = 3.1536e+09, tolerance = 0,
next fire date = 453098071 (-4421.76019 @ 96223387169499),
callout = _ZN2CAL14timer_callbackEP16__CFRunLoopTimerPv (QuartzCore.framework)}
},

modes = {
CFRunLoopMode {
sources0 = { /* same as 'common mode items' */ },
sources1 = { /* same as 'common mode items' */ },
observers = { /* same as 'common mode items' */ },
timers = { /* same as 'common mode items' */ },
},

CFRunLoopMode {
sources0 = { /* same as 'common mode items' */ },
sources1 = { /* same as 'common mode items' */ },
observers = { /* same as 'common mode items' */ },
timers = { /* same as 'common mode items' */ },
},

CFRunLoopMode {
sources0 = {
CFRunLoopSource {order = 0, {
callout = FBSSerialQueueRunLoopSourceHandler}}
},
sources1 = (null),
observers = {
CFRunLoopObserver >{activities = 0xa0, order = 2000000,
callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
)},
timers = (null),
},

CFRunLoopMode {
sources0 = {
CFRunLoopSource {order = -1, {
callout = PurpleEventSignalCallback}}
},
sources1 = {
CFRunLoopSource {order = -1, {
callout = PurpleEventCallback}}
},
observers = (null),
timers = (null),
},

CFRunLoopMode {
sources0 = (null),
sources1 = (null),
observers = (null),
timers = (null),
}
}
}

可以看到,系统默认注册了5个Mode:

  1. kCFRunLoopDefaultMode: App的默认Mode,通常主线程是在这个Mode下运行的。
  2. UITrackingRunLoopMode: 界面跟踪Mode,用于ScrollView 追踪触摸滑动,保证界面滑动时不受其他Mode影响。
  3. UIInitializationRunLoopMode: 在刚启动App时进入的第一个 Mode,启动完成后就不再使用。
  4. GSEventReceiveRunLoopMode: 接受系统事件的内部Mode,通常用不到。
  5. kCFRunLoopCommonModes: 这是一个占位的Mode,没有实际作用。

还有更多苹果内部的Mode,但那些Mode在开发中就很难遇到了。

RunLoop进行回调时,一般都是通过一个很长的函数调用出去(call out),当你在代码中下断点调试时,通常能在调用栈上看到这些函数。下面是这几个函数的整理版本,如果你在调用栈中看到这些长函数名,在这里查找一下就能定位到具体的调用地点了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
{
// 1. 通知Observers,即将进入RunLoop
// 此处有Observer会创建AutoreleasePool: _objc_autoreleasePoolPush();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopEntry);
do {
// 2. 通知Observers: 即将触发Timer回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeTimers);

// 3. 通知Observers: 即将触发Source (非基于port的,Source0) 回调。 __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeSources);
__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);

// 4. 触发Source0 (非基于port的) 回调。 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__(source0);
__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);

// 5. 通知Observers,即将进入休眠
// 此处有Observer释放并新建AutoreleasePool: _objc_autoreleasePoolPop(); _objc_autoreleasePoolPush();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeWaiting);

// 6. sleep to wait msg.
mach_msg() -> mach_msg_trap();


// 7. 通知Observers,线程被唤醒
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopAfterWaiting);

// 8. 如果是被Timer唤醒的,回调Timer
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(timer);

// 9. 如果是被dispatch唤醒的,执行所有调用 dispatch_async等方法放入main queue 的 block
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(dispatched_block);

// 10. 如果Runloop是被Source1 (基于port的) 的事件唤醒的,处理这个事件
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__(source1);

} while (...);

// 11. 通知Observers,即将退出RunLoop
// 此处有Observer释放AutoreleasePool: _objc_autoreleasePoolPop();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopExit);
}

AutoreleasePool

App启动后,苹果在主线程RunLoop里注册了两个Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()。

第一个Observer监视的事件是Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush()创建自动释放池。其order 是-2147483647,优先级最高,保证创建释放池发生在其他所有回调之前。

第二个Observer监视了两个事件:BeforeWaiting(准备进入休眠)时调用_objc_autoreleasePoolPop()_objc_autoreleasePoolPush()释放旧的池并创建新池;Exit(即将退出Loop) 时调用_objc_autoreleasePoolPop()来释放自动释放池。这个Observer的order是2147483647,优先级最低,保证其释放池子发生在其他所有回调之后。

在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被RunLoop创建好的AutoreleasePool环绕着,所以不会出现内存泄漏,开发者也不必显示创建Pool了。

事件响应

苹果注册了一个Source1(基于 mach port 的)用来接收系统事件,其回调函数为__IOHIDEventSystemClientQueueCallback()

当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由IOKit.framework 生成一个IOHIDEvent事件并由 SpringBoard 接收。这个过程的详细情况可以参考这里。SpringBoard只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种Event,随后用mach port转发给需要的App进程。随后苹果注册的那个Source1就会触发回调,并调用_UIApplicationHandleEventQueue()进行应用内部的分发。

_UIApplicationHandleEventQueue()会把 IOHIDEvent 处理并包装成UIEvent进行处理或分发,其中包括识别UIGesture/处理屏幕旋转/发送给 UIWindow 等。通常事件比如 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。

手势识别

当上面的_UIApplicationHandleEventQueue()识别了一个手势时,其首先会调用 Cancel 将当前的 touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。

苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,这个Observer的回调函数是 _UIGestureRecognizerUpdateObserver(),其内部会获取所有刚被标记为待处理的GestureRecognizer,并执行GestureRecognizer的回调。

当有UIGestureRecognizer的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。

界面更新

当在操作 UI 时,比如改变了Frame、更新了UIView/CALayer的层次时,或者手动调用了UIView/CALayer的setNeedsLayout/setNeedsDisplay方法后,这个UIView/CALayer就被标记为待处理,并被提交到一个全局的容器去。

苹果注册了一个Observer监听BeforeWaiting(即将进入休眠)和Exit (即将退出Loop)事件,回调去执行一个很长的函数:
_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()。这个函数里会遍历所有待处理的UIView/CAlayer以执行实际的绘制和调整,并更新UI界面。

这个函数内部的调用栈大概是这样的:

1
2
3
4
5
6
7
8
9
10
11
_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()
QuartzCore:CA::Transaction::observer_callback:
CA::Transaction::commit();
CA::Context::commit_transaction();
CA::Layer::layout_and_display_if_needed();
CA::Layer::layout_if_needed();
[CALayer layoutSublayers];
[UIView layoutSubviews];
CA::Layer::display_if_needed();
[CALayer display];
[UIView drawRect];

定时器

NSTimer其实就是CFRunLoopTimerRef,他们之间是 toll-free bridged 的。一个NSTimer注册到RunLoop后,RunLoop会为其重复的时间点注册好事件。例如 10:00, 10:10, 10:20这几个时间点。RunLoop为了节省资源,并不会在非常准确的时间点回调这个Timer。Timer有个属性叫做Tolerance(宽容度),标示了当时间点到后,容许有多少最大误差。

如果某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。就比如等公交,如果 10:10 时我忙着玩手机错过了那个点的公交,那我只能等10:20这一趟了。

CADisplayLink是一个和屏幕刷新率一致的定时器(但实际实现原理更复杂,和 NSTimer 并不一样,其内部实际是操作了一个 Source)。如果在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer相似),造成界面卡顿的感觉。在快速滑动TableView时,即使一帧的卡顿也会让用户有所察觉。Facebook开源的 AsyncDisplayLink 就是为了解决界面卡顿的问题,其内部也用到了RunLoop,这个稍后我会再单独写一页博客来分析。

PerformSelecter

当调用NSObject的performSelecter:afterDelay:后,实际上其内部会创建一个Timer并添加到当前线程的RunLoop中。所以如果当前线程没有RunLoop,则这个方法会失效。

当调用performSelector:onThread:时,实际上其会创建一个 Timer加到对应的线程去,同样的,如果对应线程没有RunLoop该方法也会失效。

关于GCD

实际上RunLoop底层也会用到GCD的东西,但同时GCD提供的某些接口也用到了RunLoop, 例如dispatch_async()

当调用dispatch_async(dispatch_get_main_queue(), block)时,libDispatch会向主线程的RunLoop发送消息,RunLoop会被唤醒,并从消息中取得这个block,并在回调 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__() 里执行这个 block。但这个逻辑仅限于dispatch到主线程,dispatch 到其他线程仍然是由libDispatch处理的。

关于网络请求

iOS 中,关于网络请求的接口自下至上有如下几层:

1
2
3
4
CFSocket
CFNetwork ->ASIHttpRequest
NSURLConnection ->AFNetworking
NSURLSession ->AFNetworking2, Alamofire
  • CFSocket是最底层的接口,只负责socket通信。
  • CFNetwork是基于CFSocket等接口的上层封装,ASIHttpRequest工作于这一层。
  • NSURLConnection是基于CFNetwork的更高层的封装,提供面向对象的接口,AFNetworking工作于这一层。
  • NSURLSession是iOS7中新增的接口,表面上是和 NSURLConnection 并列的,但底层仍然用到了NSURLConnection的部分功能 (比如 com.apple.NSURLConnectionLoader线程),AFNetworking2和 Alamofire工作于这一层。
CATALOG
  1. 1. RunLoop的概念
  2. 2. RunLoop与线程的关系
  3. 3. RunLoop对外的接口
    1. 3.1. CFRunLoopSourceRef
    2. 3.2. CFRunLoopTimerRef
    3. 3.3. CFRunLoopObserverRef
  4. 4. RunLoop的Mode
  5. 5. RunLoop的内部逻辑
  6. 6. RunLoop的底层实现
  7. 7. 苹果用RunLoop实现的功能
    1. 7.1. AutoreleasePool
    2. 7.2. 事件响应
    3. 7.3. 手势识别
    4. 7.4. 界面更新
    5. 7.5. 定时器
    6. 7.6. PerformSelecter
    7. 7.7. 关于GCD
    8. 7.8. 关于网络请求